*1 In 1961 Murray Gell-Mann predicted the existence of a new particle called an omega (Ω) minus. It was subsequently discovered in 1964. At this time the quark model consisted of three particles, the properties of which are given in the table. | Quark | Charge | Predicted mass in MeV/c² | |-------------|----------------|--------------------------| | Up (u) | $+\frac{2}{3}$ | 4 | | Down (d) | $-\frac{1}{3}$ | 4 | | Strange (s) | $-\frac{1}{3}$ | 80 | (a) Explain what a charge of $+\frac{2}{3}$ means. (1) (b) State the predicted mass of, and the charge on a \tilde{s} . (2) (c) Convert 4 MeV/ c^2 to kg. (3) | (d) | The event | which led to | the discovery | of the omega | minus particle | can be summarised | |-----|-------------|---------------|---------------|----------------|----------------|-------------------| | | as follows. | A negative | kaon collided | with a station | ary proton and | produced a | | | positive ka | on, a neutral | kaon and the | omega minus | • | | (i) Kaons K consist of combinations of either an up or down quark plus a strange quark. The omega minus consists of three strange quarks. Complete the following table by ticking the appropriate boxes. (2) | | Meson | Baryon | Nucleon | Lepton | |---------------|-------|--------|---------|--------| | Negative kaon | | | | | | Omega minus | | | | | (ii) Write an equation using standard particle symbols to summarise this event. (2) (iii) The negative kaon consists of ū s. Deduce the quark structure of the other two kaons involved in this event. (2) | 2 | In 2011 physicists at the Relativistic Heavy Ion Collider (RHIC) announced the creation of nuclei of anti-helium-4 which consists of anti-protons and anti-neutrons instead of protons and neutrons. | | |------|--|-----| | | (a) 'Ordinary' helium-4 is written as ⁴ ₂ He. | | | | What do the numbers 4 and 2 represent? | | | | | (2) | | | | | | | | | | •••• | (b) In the RHIC experiment, nuclei of gold ¹⁹⁷ ₇₉ Au travelling at speeds greater than 2.99 × 10 ⁸ m s ¹ , in opposite directions, collided, releasing energies of up to 200 GeV. After billions of collisions, 18 anti-helium nuclei had been detected. | | | | (i) What is meant by 'relativistic' in the collider's name? | (1) | | | | | | | (ii) State why it is necessary to use very high energies in experiments such as these. | (1) | | | | | | | (iii) Show that the mass of a stationary anti-helium nucleus is about 4 ${\rm GeV}/c^2$. | (4) | (iv) State why the small number of anti-helium nuclei produced only survive for a fraction of a second. | (1) | |---|-----| | | (1) | | (v) A slow moving anti-helium nucleus meets a slow moving helium nucleus. If | | | they were to combine to produce 2 high energy gamma rays, calculate the frequency of each gamma ray. | | | | (2) | | | | | | | | | | | Frequency | | | (c) There are two families of hadrons, called baryons and mesons. Baryons such as protons are made of three quarks. | | | (i) Describe the structure of a meson. | | | | (1) | | | | | | | | | | | (ii |) Up quarks have a charge of +2/3e and down quarks a charge of 1/3e. Describe the quark composition of anti-protons and anti-neutrons and use this to deduce the charge on each of these particles. | | |-----|---|-----| | | | (4) | (Total for Question 16 mark | as) | **3** The photograph shows tracks in a particle detector. | (a) Explain the role of a magnetic field in a particle detector. | (2) | |--|----------------------| | | | | | | | (b) Explain how you can tell that track XY was produced by a p X to Y rather than from Y to X. | particle moving from | | | (2) | | (c) The particle that produced track XY was a π ⁺ . Deduce the direction of the magnerical field in the photograph. | (1) | |--|------| | (d) At Y, the π⁺ decayed into a positively charged muon (μ⁺) and a muon neutrino. Th μ⁺ has a very short range before decaying into various particles, including a positr which produced the final spiral. (i) Give two reasons why you can deduce that the muon neutrino is neutral. | | | 2 | | | (ii) Explain the evidence from the photograph for the production of the muon neutrino at Y. | (3) | | (Total for Question 10 ma | rks) | | 4 | Anti-hydrogen atoms have been created at CERN. An anti-hydrogen atom consists of anti-proton and a positron. | an | |-----|--|-------| | | (a) Compare the properties of an anti-hydrogen atom with a hydrogen atom. | | | | | (2) | (b) Calculate the electrostatic force of attraction between the positron and the anti-pro- | oton. | | | Assume that the radius of the anti-hydrogen atom is 5.3×10^{-11} m. | | | | | (3) | | | | | | | | | | ••• | | | | | | | | | | | | | | | | ••• | | | | | | | | | | | | | | | | ••• | | | | | Force | | | | | | | (c) Scientists want to find out if anti-hydrogen atoms emit the same spectra as hy atoms. Anti-protons are relatively easy to contain, however, it is very difficult contain anti-hydrogen atoms for any period of time. | | |--|-----| | Explain why it is difficult to contain anti-hydrogen atoms compared with ant | - | | | (2) | | | | | | | | | | | (d) The technology suggested in the science fiction series, Star Trek, for powering the Starship Enterprise relied on antimatter. When an anti-hydrogen atom me hydrogen atom, they annihilate and produce energy. | • | | (i) How much energy, in joules, would be produced by the annihilation of j
1 milligram of anti-hydrogen atoms? | | | | (3) | Energy | | | (ii) Anti-protons are required to produce anti-hydrogen atoms. The total proof anti-protons on Earth over the past 25 years adds up to only a few national control of the protons of the produce anti-hydrogen atoms. | | | Suggest why so little anti-matter has been created. | (1) | | | (1) | | | | | | | (Total for Question 11 marks)